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ABSTRACT 

The optimization of the experimental conditions in preparative chromatography under constraints of 
recovery yield, product purity and maximum available pressure is discussed. It is shown that there are 
optimum values of the loading factor and the column limit efficiency which permit the achievement of the 
maximum production rate under specified constraints of recovery yield and product purity. The optimum 

loading factor is given by a simple equation. The optimum column efficiency is calculated from numerical 
solutions of the semi-ideal model. The optimum column length for a given packing material and particle 
size and the optimum mobile phase velocity are then derived. These optimum values depend on the 
maximum available pressure, and the production rate increases rapidly with increasing pressure. If a given 
column is available and it is shorter than the optimum length, it should be operated at the optimum loading 
factor and at the optimum column efficiency. The mobile phase velocity, and hence the production rate, are 
less than those for the column of optimum length. If the column is longer than the optimum and cannot be 
cut, it should be operated at the maximum available pressure, at a mobile phase velocity lower than the 
optimum and with a loading factor larger than the optimum. 

INTRODUCTION 

The optimization of experimental conditions in preparative chromatography is 
a topic of great current interest. This process of separation or purification is expensive. 
Colin [I] has shown that the main contributions to that cost are, in order of decreasing 
importance, (i) the mobile-phase components (solvent, additives), including solvent 
losses and solvent regeneration; (ii) the amortization of the instrument; (iii) the 
periodic replacement of the stationary phase; (iv) labor; (v) other items, including 
energy, instrument maintenance and site preparation. Hence, it is important to 
maximize the production rate of a given instrument-column combination. Obviously, 
this requires the operation of the process at high concentrations, under non-linear 
conditions. When the column is “overloaded”. bands interfere and overlap. However. 
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because the displacement effect [2-61 enhances the separation between adjacent bands, 
high production rates of highly pure fractions may be achieved under these 
“overlapping band” conditions. The inconvenience of this mode of operation is similar 
to one of the major difficulties encountered in displacement chromatography, where 
the recovery yield becomes significantly smaller than unity. 

This may be of limited concern for the isolation or purification of low- or 
medium-molecular-weight chemicals whose conformers exchange rapidly, as opposed 
to biopolymers. The recovery yield for given injection of the feed of such products may 
be moderate as long as this permits a significant increase in production rate (or rather 
a decrease in production costs) over “touching band” conditions. The intermediate 
fractions can be recycled, and the final recovery yield can be extremely high. The 
operation is profitable as long as the additional processing costs are offset by the 
revenue brought by the increase in the production rate. On the other hand, some 
peculiarities of the specific problem considered may be important and prevent or 
drastically limit this mode of operation. For proteins, the risk of a change in 
conformation, and hence in biological activity, is considered so serious that regulatory 
agencies require batch certification for the fractions which would have to be 
reprocessed. Given the cost and inconvenience of this procedure, intermediate 
fractions are better wasted. This results in the formulation of an additional constraint 
in the optimization development, a recovery yield constraint, which is added to the 
purity constraints. 

Knox and Pyper [7] were the first to discuss the optimization of experimental 
conditions in preparative liquid chomatography. They addressed the touching-band 
case for a two-component mixture which they discussed thoroughly, making two 
critical assumptions, however. First, they ignored the competition between the two 
components for interaction with the stationary phase and considered the behavior of 
the two bands to be independent. Second, they assumed that the band profiles are right 
triangles, which is equivalent to replacing the equilibrium isotherms by their first 
two-term expansion (parabolic isotherm). This assumption has been rightly criticized 
by Snyder et al. [S], who nevertheless used it implicitly in their reformulation of the 
Knox and Pyper calculations [9]. Within the framework of their assumptions, Knox 
and Pyper [7] were able to calculate the sample size needed to achieve touching-band 
conditions and from there to derive the optimum values of the experimental 
parameters. They predicted that the optimum column should give a resolution of 1.7 
between the peaks of the two components under linear conditions (sample size 
corresponding to a very small value of the loading factor). They also predicted an 
optimum value for the ratio G/L, where d,, is the average particle diameter and L the 
column length. 

Recently, we published a theoretical analysis of the optimization problem for 
a binary mixture in the overlapping-band case (no yield constraint) [ 10,l l] and in the 
touching-band case [12]. The practical consequences of this work have been explained 
in detail in several publications [ 13-171. The procedures for the determination of the 
experimental conditions have been described and illustrated [lo-121. 

These analyses take into account the competition between the two components 
by assuming competitive Langmuir isotherms. We know that this isotherm does not 
account exactly for the competitive interaction between the components of a mixture, 
but that it predicts properly the trends and gives at least a good semi-quantitative 
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estimate of the individual band profiles and hence of the production rate’ and recovery 
yield” [6,18,19]. In the case of touching bands [12], we have shown that the influence of 
the competitive interaction between the two components changes slightly the optimum 
column characteristics (optimum length or particle size) or the optimum mobile-phase 
flow velocity. On the other hand, the optimum loading factor, and hence the maximum 
production rate, are considerably different from the values predicted by Knox and 
Pyper [7]. Depending on the feed composition, they may be dramatically increased or 
decreased. In the case of overlapping bands, an equation was derived between the 
optimum sample size and the required purity [lo]. The optimum operating conditions 
were related to the characteristics of the separation problem studied [ 1 I]. It was shown 
that allowing the collection of slightly impure (e.g.. 99% pure) fractions permits a large 
increase in the production rate when the second-eluted component is in excess [lO,l 11. 

Our previous work, however, considered only two extreme cases, 100% recovery 
yield (touching-band case) and maximum possible production rate, which results in 
a low recovery yield (ca. 60%). In this paper, we discuss the influence of a recovery 
yield constraint on the optimization of these experimental conditions. 

THEORY 

Summary of previous results 
Consider first a two-component mixture, within the framework of the ideal 

modelh [lo]. The production rate increases in proportion to the sample size until, 
beyond the touching-band condition, a chromatogram is obtained such that a cut at 
the retention time of the second component shock (which gives a 100% yield) gives 
a fraction having exactly the required degree of purity, Puz. If we continue to increase 
the amount of feed injected at each cycle, the production rate remains constant and the 
recovery yield decreases. The optimum sample size for which this maximum 
production rate is achieved is such that the corresponding value of the loading factor 
for the second component, Lt,, is given by the following equation [lo]: 

where IX is the relative retention of the two compounds (IX = a2/al = kb,,/~O,,), the 
coeficient aj being the first coefficient of the equilibrium isotherm of component i and 
/&o,i is its retention factor, bi is the second coefficient of the single-component Langmuir 
isotherm of component i and x is given by 

’ The production rate is the amount of the corresponding component in the purified fraction at the 
required degree of purity which is produced per unit time. The recovery yield is the ratio between the amount 
of the component of interest that is collected in the product fraction and the amount injected in the column 
with the feed. 

b The ideal model assumes that the column efficiency is infinite. In practice, although real columns 
have a finite effkiency, many results of the ideal model can be applied directly or with only minor 
corrections. 
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J 1 - Pu* 
.X= 

Puaarl 

For touching bands, the purity of the collected fraction is lOO%, so x = 0 in eqn. 1. 
Finally, rl is the root of the characteristic equation of the problem [20], which has been 
shown to be practically equal to C?/C$ [3], where CP is the concentration of component 
i in the feed. 

Thus, eqn. 1 can be rewritten as 

a-l * 

L& = 
[ 1 a(1 -x) 

1 + ck*co,i 

WS,iG,2 

(3) 

where qs,i = ai/bi is the adsorbent saturation capacity for component i. The sample 
size, n, is given by 

n = L&(1 + c:/c;> (1 - $!TLq,,, (4) 

where E is the packing porosity, S is the column geometrical cross-sectional area and 
L is the column length. The sample size given by eqns. 3 and 4 gives the maximum 
production rate and a total recovery yield in the ideal model. 

We have shown that for real columns whose efficiency is finite, the optimum 
sample size for maximum production rate is still given by eqns. 3 and 4 Ill]. However, 
the recovery yield achieved with this optimum sample size, which was total with an 
ideal column, is now less than 100%. It depends on the column efficiency, increasing 
with the column limit efficiency (i.e., the efficiency measured at very small loading 
factors) and tending towards unity when the efficiency becomes infinite. The column 
efficiency, in turn, depends on the mobile phase velocity, U, which turns out to control 
both the cycle time (proportional to l/u) and the recovery yield. Accordingly, there will 
be an optimum value of the mobile phase flow velocity at which the production rate is 
maximum. It turns out that this mobile phase velocity corresponds to a very high value 
of the reduced velocity (unless the separation is extremely difficult, with a values below 
1.05) and that the corresponding recovery yield is around 60% in about all instances 

[ill- 
As suggested by Knox and Pyper [7], there is an optimum value for the ratio dE/L 

the value of which depends on the recovery yield [I 11. However, the demonstration of 
this result [7,1 I] assumes a simplified column plate height equation (h = Cv). For 
a general plate height equation (e.g., the Knox equation), this result remains valid as 
a first approximation at high velocities, i.e., for all but the most difficult separations 
(e.g., with r < 1.1, and when small particles are used). Thus, if we introduce a recovery 
yield constraint, as we are going to do here, the optimum column will change with the 
recovery yield constraint chosen. The fact that there is an optimum value for the ratio 
di/L but no separate optimum value of the particle size and the column length means 
that we can chose arbitrarily one of these parameters and adjust the other. For 
example, if the optimum value of d;jL is 10 (d,, in pm, L in cm), we can take a lo-cm 
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long column packed with IO-pm particles or a 40-cm long column packed with 20-,um 
particles. With the latter column, both the cycle time and the sample size will be four 
times larger than with the former, so the production rate will remain the same. 
However, from the point of view of production rate optimization, we could as well 
chose a 0.9-cm long column packed with 3-pm particles or a 250-cm long column 
packed with 50-pm particles. Neither of these columns would be very practical. 

As in our previous work, we have neglected here the extra-column effects which 
may modify the band shape and the separation. The interaction between these sources 
of band broadening and the band profile in non-linear chromatography has been 
discussed recently [21]. It is easier in preparative than in analytical chromatography to 
design injection systems, connecting tubes and detectors with a volume that is small 
compared with that of the column. However, the feed volume injected is always large. 
The influence of the feed volume on the band profile has also been discussed [22]. It has 
been found to be small compared with that of the non-linear effects (displacement and 
tag-along effects). 

Statement of the optimization problem 
The primary aim of this work was the determination of the optimum 

experimental conditions for the maximum production rate of the second-eluted 
component of a binary mixture, at a given degree of purity, with a certain recovery 
yield. The second aim was an investigation of the trade-offs between production rate 
and recovery yield. 

In this discussion, we assume that the chromatogr’aphic system has already been 
selected. Thus, the retention factors, k:, of the two components are constant, in 
addition to the relative retention, ~1, and the column saturation capacities, qs,i, for the 
two components, their molecular diffusion coefficients and the coefficients of the 
Knox plate height equation [23]. Finally, we assume that the chromatograph used 
cannot be operated above a certain inlet pressure, AP. 

In previous papers we have already discussed the influence on the production 
rate of the relative retention [17] and of the maximum available inlet pressure [ 11,161 
and shown that the maximum production rate always increases rapidly with increasing 
values of these two parameters. 

General equations used 
For the equilibrium isotherms, we used the classical competitive Langmuir 

equation [24]: 
lliCi 

qi = 1 + blCl + bzC2 
(5) 

where qi and Ci are the concentrations of component i in the stationary and the mobile 
phases (both in mol/l) at equilibrium and ai and bi are numerical coefficients. All of the 
calculations presented here were performed for binary mixtures of variable composi- 
tions of two components and a maximum available pressure of 100 bar, except for 
a study of the influence of the operating pressure. In most instances, the relative 
retention, CI, is 1.20. 

For the plate height equation, we used the classical Knox equation [23]: 

h = $ + A+ + cv (6) 
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where h = H/d, is the reduced plate height, i.e., the ratio of the actual column plate 
height to the average particle size, and v = L&,,/O~ is the reduced mobile phase velocity 
or Peclet number for the particle size. In the calculations the results of which are 
reported here, the coefficients A, B and C are 1, 2 and 0.1 respectively. 

To calculate the relationship between the mobile phase flow velocity, the inlet 
pressure and the column characteristics, we use the classical Darcy equation and its 
well known relatives: 

u- 
d;AP 

&IL 

V- 

APd; 

&IQJ 

(74 

(7b) 

where 4 is the mobile phase velocity, D, is the component diffusivity in the mobile 
phase and 4 is the column hydrodynamic resistance factor (cu. 1000). 

Optimization strategies 
The recovery yield depends on the degree of band overlap, determined by both 

the loading factor (which controls the degree of column overloading) and the column 
efficiency (which controls the thickness of the shock layers and increases the band 
width beyond the value predicted by the ideal model). The production rate for the 
sei=ond component is [IO] 

pr2 &,2R2qs,2 

(1 - &)S = V0.2 
(8) 

In this equation, we assume that the cycle time is t, = &2t0, the time spent by the 
last-eluted fraction of the second component in the stationary phase. If another value 
of the cycle time is used, eqn. 8 should be multiplied by (tR,0,2 ~ to)/tc. R2 is the 
recovery yield for the second component and E is the packing porosity. Note that the 
production rate is proportional to the loading factor and independent of the column 
length, because with a constant column cross-sectional area, the loading factor 
corresponding to a given sample size is inversely proportional to the column length. 
The values of the production rate (Pr2) and the recovery yield (R,) are related to the 
experimental conditions. 

Many combinations of mobile phase flow velocity and loading factor may result 
in the same value of the recovery yield, and we need to find out rapidly which 
combination gives the highest production rate. It is impossible to find out rapidly the 
exact combination of parameter values giving the maximum production rate for 
a given fraction purity and a given recovery yield. However, it is possible to derive 
rapidly approximate values which are close enough to the optimum values for practical 
purposes. We present here four different methods, which are all simple, compare them 
and choose the most effective among them. With the first two methods, we start from 
the experimental conditions giving the maximum possible production rate and 
a recovery yield of ea. 60%, and we vary one of the operational parameters, the sample 
size or the mobile phase velocity. 
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Optimization strategy I. We can keep the sample size constant, at the value given 
by eqns. 3 and 4, and decrease the mobile phase velocity to increase the column 
efficiency and the recovery yield until the constraint is met. In so doing, we decrease the 
production rate, because Rz will increase much more slowly than the cycle time, i.e., 
l/U. 

Eqns. 7 and 8 in ref. 11, which give the recovery yield and the production rate, are 
valid as long as the sample size is given by eqns. 3 and 4. Thus, in this approach, we can 
use them to calculate Pr2 and R2 (Note: in these equations there is an unfortunate 
typographical error [11,25]; the correct equations are given in ref. 25 and are used 
here). Accordingly, the constraint on the recovery yield introduces a relationship 
between the parameters of the separation, and the required limit column efficiency is 
obtained by solving the combination of eqn. 5 and the correct eqn. 7 in ref. 11 [25]: 

+ JW]& + 1)’ - 1)-l (9) 

where R2 is the required recovery yield and U’2,th and y 
relationships: 

W2,th = 
la - 1) [1 + a + ~~~,2~0,1/~4~,i~O,2~1 

d1 + 4~,2~o,~/~~~~,~~*,2~12 

and 

y = 1 + ~s,*~o,ll(cTs,lco,2) 

1 + 4s,2G,Il(%Ico,2) 

are given by the following 

(loa) 

(lob) 

The calculation of NO requires only the knowledge of the single-component isotherm 
coefficients readily obtained by the retention time method” [26,27]. We have shown 
that the production rate always increases with increasing inlet pressure [11,12,16]. 
Hence the column must be operated at the maximum pressure available, and its 
efficiency must be N,,. Thus the optimum column length at fixed particle size (or, 
conversely, the optimum d, for a given L) is derived from eqns. 6 and 7b. The optimum 
column length (or particle size) depends on the recovery yield required (see eqn. 9). 

Eqn. 9 shows that, for any required value of the recovery yield, there is an 
optimum limit column efficiency, NO, which depends also on the required purity of the 
fractions, the relative composition of the feed and the isotherm parameters (a, qs,i and 
PO,,). The existence of an optimum value of NO is a general result, although eqn. 9 has 
been derived for a loading factor given by eqn. 3. If another loading factor must be 

a The retention time method uses the analytical equation of the single-component band profile in the 
case of a Langmuir isotherm to determine the parameters of this isotherm. 
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used, there is still an optimum column efficiency for any required yield. However, this 
efficiency must be calculated by using the solution of the semi-ideal model. 

Optimization strategy II. We can keep the mobile phase flow velocity constant, 
and hence the rate constant of the mass transfer kinetics and the column limit 
efficiency, and reduce the sample size until the recovery yield constraint is met. This 
approach will give the lowest production rate that can be achieved while maintaining 
a certain value of the recovery yield. 

The column efficiency, and hence the column length and reduced flow velocity, 
are kept constant and equal to those giving the maximum possible production rate. 
These values are those calculated for the maximum possible production rate (no yield 
constraint) and are given by eqns. 5,7 and 8 in ref. 11. The sample size must be reduced 
from the value given by eqns. 3 and 4 until the required yield is achieved. A series of 
successive individual profile computations permits the rapid calculation of the loading 
factor for which the yield is equal to the stated value of the constraint. 

Optimization strategy III. Obviously, neither of the above two approaches will 
give the maximum possible production rate at the requested recovery yield. To achieve 
this result, both the parameters Lf,2 and u must be adjusted. We may attempt to keep 
constant the product RZLf,2 in eqn. 8. Since the recovery yield at the maximum possible 
production rate (no yield constraint) is ca. 60%, we may reduce the loading factor by 
the ratio 0.6/R2, where R2 is the requested value of the yield. Thus, the loading factor is 
given by 

Lf%2 = 
0.6 

Lit2 . z 
2 

(11) 

where L& is given by eqn. 3. We then adjust the column efficiency to achieve the 
desired recovery yield. This procedure provides an adjustment of both parameters. 
Although not rigorous, the method is reasonable, as it is in agreement with the results 
of a simplex study which showed a quasi-linear relationship between the recovery yield 
and both Lr,2 and u [2X]. The required efficiency is obtained by calculating series of 
chromatograms corresponding to the loading factor given in eqn. 11 and different 
values of the column efficiency and determining the value of the efficiency for which 
the recovery yield is equal to the required value. The optimum column length and 
mobile phase velocity are calculated as described in the first strategy. 

Optimization strategy IV. Starting from the optimum values predicted by the 
third approach, the loading factor is slightly increased, while the mobile phase velocity 
is decreased (the efficiency is increased) in order to achieve the desired recovery yield. 
The procedure is repeated until the maximum production rate is observed. The 
determination of the optimum values of the loading factor, Lf,Z, and the column 
efficiency is made by calculation of series of chromatograms. 

Optima in chromatography are usually rather flat. Hence the third approach will 
most often give an excellent approximation of the optimum conditions, while the 
fourth approach will converge rapidly towards the true optimum. 
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RESULTS AND DISCUSSION 

We first compare the results obtained with the different approaches outlined in 
the previous section. We show that one of these methods performs better than the 
others. Then, we use the results obtained with this preferred method to investigate the 
trade-offs between recovery yield and production rate. 

Table I compares the production rates obtained with the four different 
strategies. The calculations were performed for a 1:9 binary mixture with a relative 
retention, a, of 1.20 and for lo-pm particles. The other experimental conditions (Table 
I) are typical of current practice in preparative liquid chromatography. For this 
mixture, the maximum possible production rate, with a 60% recovery yield, is 0.46 mol 
mp2 s-l (see Table II). Note that, in agreement with eqn. 8, the values of the production 
rate are proportional to the loading factor and the recovery yield. 

The different strategies can be ranked in order of the performance allowed. The 
second strategy is obviously the worst. The first strategy gives twice as large 
a production rate, but is still less than two thirds of the production rate predicted by the 
third strategy. The fourth strategy gives only a marginal increase in production rate, 
about 3% at best, which is hardly significant. On the other hand, strategy IV is more 
complex and requires more computation time. Accordingly, in the remainder of this 
paper, we shall use exclusively the third strategy. 

The maximum production rate of the second component that can be achieved 
with 1:9 mixture, while achieving a 95% recovery yield, is two thirds of the maximum 
possible production rate, which would bring a recovery yield of only 60%. In 
economical terms, it means that by reducing the throughput by a factor of 2.3, we 
reduce the production rate by only 1.5. The savings on the throughput and on the 
amount of feed to be recycled or wasted due to the large increase in yield are certainly 
significant. Probably the least costly production rate would be achieved for 
a throughput corresponding to a value of the recovery yield between 60 and 95%. 

TABLE I 

OPTIMUM EXPERIMENTAL CONDITIONS FOR A SPECIFIC VALUE OF THE RECOVERY 
YIELD WITH VARIOUS OPTIMIZATION STRATEGIES 

Recovery yield constraint: 95%. Experimental conditions: E = 1,2, J&i = 3; column saturation capacity, 

4&l = 9 r,z = 5; phase ratio, F = 0.25; maximum available pressure, AP = 100 bar; solute molecular 
diffusion coefficients, D, = 1 1 O-9 m’/s; mobile phase viscosity, ‘1 = 1 CP (1 10m3 Pa s); packing particle 
average diameter, d, = 10 pm; degree of purity of the collected fractions, 99%; cycle time, f, = f, o2 ~ to; 
plate height equation, h = 2/v + v”.33 + 0.1~; composition of the binary mixture, 1:9 (10% of’the first 
component). 

Strategy No 
used 

I 5100 
II 550 
III 1050 
IVa 1250 
IVb 1400 

&! 

0.32 
0.0884 
0.127 
0.14 
0.15 

Y Loading Production rate, 
factor Pr,/(l -E)S 

W) (mol m-’ s-i) 

31.0 4.82 0.198 
113.2 0.7 0.104 

78.7 3.04 0.316 
71.2 3.4 0.319 
66.7 3.7 0.327 
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Trade-offs between production rate and recovery yield 
Using the same binary mixture as for the calculation of the data in Table I, Table 

II compares the production rates predicted by the third optimization strategy for 
different values of the required recovery yield, from 60% (in practice the maximum 
possible production rate without yield constraint) to near 100% (corresponding to the 
touching-band case). The production rate decreases slowly at first with increasing 
required recovery yield, the loss of production rate being 10% for an 80% yield and 
22% for a required yield of 90%. Beyond 90%, the loss increases rapidly and becomes 
precipitous above 99%. For the touching-band condition, the production rate is 15% 
of the maximum production rate possible and still only 22% of the production rate 
possible with the excellent recovery yield of 95%. Allowing a recovery yield of 99.9%, 
which is equivalent to total recovery for all practical purposes, still gives a 2.5 times 
larger production rate than the touching-band case. However, the reason for this 
remarkable increase in the production rate is that we have accepted to produce 99% 
pure fractions, not that we have accepted a decrease in yield of 0.1%. Touching bands 
permit, at least in theory, both a total recovery yield and the production of totally pure 
products. When the concentration of the less retained component in the feed is much 
less than the concentration of the more retained component, allowing a small amount 
of impurity in the product permits a large increase in production rate [lo]. This is no 
longer true at higher concentrations of the less retained component. 

The data in the Table II show also that the required efficiency increases rapidly 
with increasing recovery yield, as well as the column length, while the reduced velocity 
and the loading factor decreases steadily. Although the throughput decreases, allowing 
important savings on solvent costs, the column required is longer and the amount of 
packing material needed per unit amount of feed purified increases. 

TABLE II 

TRADE-OFFS BETWEEN PRODUCTION RATE AND RECOVERY YIELD; OPTIMUM EX- 
PERIMENTAL CONDITIONS FOR MAXIMUM PRODUCTION RATE AT VARIOUS SPECIFIED 
VALUES OF THE RECOVERY YIELD 

Same experimental conditons as in Table I, except for the recovery yield constraint. R, is the resolution 
observed between the two component bands at very low value of the loading factor (linear conditions). 

Yield 

(“A) t ! 
Loading Production rate, 
factor Pr,/(l -&)S 

\ (“/u) (mol rn-’ s-‘) 

\: 
60” 550 0.76 0.084 113 4.82 0.46 
SOb 650 0.83 0.097 103 3.60 0.413 
90b X25 0.94 0.111 90 3.20 0.361 
95b 1050 1.05 0.127 78.7 3.04 0.316 
99b 1800 1.38 0.173 57.7 2.92 0.232 
99.9b 3000 1.79 0.234 42.9 2.9 0.172 
Touching 3230 1.85 0.244 41 1.24 0.0705 
band’ 

Values calculated using eqns. 5,7 and 8 in ref. I 1 (maximum possible production rate, with no yield 
constraint). 

* Values calculated using strategy III, as explained in the text. 
’ Values calculated using the procedure described in ref. 12. 
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TABLE III 

TRADE-OFFS BETWEEN PRODUCTION RATE AND RECOVERY YIELD: OPTIMUM EX- 
PERIMENTAL CONDITIONS FOR MAXIMUM PRODUCTION RATE AT VARIOUS SPECIFIED 

VALUES OF THE RECOVERY YIELD AND INFLUENCE OF THE PARTICLE SIZE 

Same experimental conditions as in Table II, except average particle size, dp = 20 pm. 

Yield IV0 R, L 1’ Loading Production rate, 

(%) (m) factor Pr,/(l --E)S 

(%) (mol m-’ s-i) 

60 500 0.73 0.315 253 4.82 0.505 
80 650 0.83 0.363 220 3.6 0.449 
90 850 0.95 0.42 190 3.2 0.38 1 
95 1100 1.08 0.483 166 3.04 0.358 
99 1800 1.38 0.633 126 2.92 0.254 

99.9 3000 1.78 0.841 95 2.90 0.191 
Touching 3380 1.90 0.90 89 1.27 0.0785 

band [12] 

Table III shows data similar to those in Table II, but corresponding to packing 
material with an average particle size of 20 ,um. The optimum column length is 
approximately four times longer than that found with lo-pm particles (see Table II), 
and the maximum production rates for each stated recovery yield are very nearly the 
same. The difference between the production rates is cu. 10% at both ends (yields of 60 
and 99.9%) and 14% for a required yield of 95%. This results confirms the observation 
by Knox and F’yper [7] and our general demonstration [12] that, when columns are 
operated at high velocities, there is a near-optimum value of d,?/L, but no separate 
optima of the particle size and the column length. 

Table IV shows data corresponding to a binary mixture of the same two 
components, but with a very different composition, 3: 1 instead of 1:9 used for Tables 

TABLE IV 

TRADE-OFFS BETWEEN PRODUCTION RATE AND RECOVERY YIELD: OPTIMUM EX- 
PERIMENTAL CONDITIONS FOR MAXIMUM PRoDUCTION RATE AT VARIOUS SPECIFIED 
VALUES OF THE RECOVERY YIELD AND INFLUENCE OF THE MIXTURE COMPOSITION 

Same experimental conditions as in Table II, except composition of the feed, 3: 1 binary mixture (25% of the 

second component). 

Yield NO R, L v Loading Production rate, 
(%) (m) factor Pr2/( 1 - B)S 

(%) (mol m-’ s-‘) 

60” 1500 1.26 0.156 64 0.875 0.0473 
80’ 1800 1.38 0.173 57.7 0.656 0.0422 
90b 2200 1.50 0.195 51.4 0.584 0.0377 
95b 2700 1.70 0.22 45.6 0.553 0.0333 
99b 4000 2.06 0.277 36.0 0.53 0.0263 

’ Values calculated from eqns. 5, 7 and 8 in ref. 1 I. 
b Values calculated from strategy III, as explained in the text. 



68 S. GOLSHAN-SHIRAZI, G. GUIOCHON 

ILIII. The concentration of the second component decreases from 90 to 25%, i.e., 3.6 
times. In the former instance, the displacement effect predominates, and we know how 
favorable this effect is to the separation chemist. It enhances the production rate for 
both the second and the first component. In the present instance (Table IV), the 
tag-along effect predominates and spreads the second-component band over a wide 
range of retention times. If we compare Tables II and IV, we observe that the 
production rate for the second component decreases nearly IO-fold, corresponding to 
a total throughput (amount of feed processed by the column per unit time) decrease by 
a factor of ea. 2.6. When a compound is eluted second, its purification (Table II) is 
much easier and less costly than its extraction (Table IV). Compared with the optimum 
conditions for the 1:9 mixture, the column required for the extraction of the second 
component from the 3:1 mixture is nearly twice as long, the optimum mobile phase 
velocity is nearly two thirds as large and the loading factor is about six times smaller. 

The only possibility of increasing the production rate would be the use of 
a combination of two chromatographic separations, the mixture collected with the 
mixed zone during the first stage being reprocessed. This raises new and interesting 
problems of optimization, which are beyond the scope of this work. 

Table V illustrates the influence of the feed composition on the production rate 
for the second component, with a required recovery yield of 95% (and a product purity 
of 99%, as in the remainder of this work). The loading factor is calculated from eqn. 
11. The production rate increases dramatically with increasing concentration of the 
second component, from 5 to 95%. At the same time, the optimum column efficiency 
decreases more than four-fold and the column length about two-fold, while the loading 
factor increases 43-fold and the optimum mobile-phase velocity more than two-fold. 
All these effects combined provide for a production rate increase by a factor of 100 and 
a more than five-fold increase in the total feed throughput. The relative ease with which 
the second component can be purified from small proportions of the first component, 
compared with the difficulty in extracting small amounts of this second component 
from an excess of the first, illustrates the importance of the displacement effect in 

TABLE V 

TRADE-OFFS BETWEEN PRODUCTION RATE AND RECOVERY YIELD: OPTIMUM EX- 
PERIMENTAL CONDITIONS FOR MAXIMUM PRODUCTION RATE FOR VARIOUS FEED 
COMPOSITIONS 

Same experimental conditions as in Table II, except variable feed composition. Recovery yield, 95%. 
Results calculated using strategy III, as explained in the text. 

Feed 
composition 

5195 950 1.0 0.120 83.3 4.62 0.509 
IO:90 1050 1.05 0.127 78.7 3.04 0.316 
25175 1300 1.18 0.144 69.6 1.93 0.177 
50:50 1720 1.35 0.169 59.3 1.15 0.090 
7525 2700 1.70 0.220 45.6 0.553 0.033 
9O:lO 3ooo 1.78 0.233 43.0 0.217 0.0123 
95:5 4100 2.08 0.281 35.5 0.107 0.0050 

RS L 

(4 
Y Loading Production rate: 

factor Pr*/( 1 - E)S 

(%) (mol m-’ s-l) 
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TABLE VI 

TRADE-OFFS BETWEEN PRODUCTION RATE AND RECOVERY YIELD: OPTIMUM EX- 
PERIMENTAL CONDITIONS FOR MAXIMUM PRODUCTION RATE AT VARIOUS VALUES 
OF THE SELECTIVITY 

Same experimental conditions as in Table II, except various vafues of selectivity and average particle size d, 
= 20 pm. Recovery yield, 95%. Results calculated using strategy III, as explained in the text. 

Selectivity, No R, 
CI 

1.1 3400 1.04 

1.2 1100 1.08 

1.3 620 1.12 

1.5 330 1.18 

1.7 22s 1.20 

v Loading Production rate, 

k) factor Pr2/(l -&)S 

(%) (mol mm2 s-‘) 

0.903 88.6 0.93 0.0594 

0.483 166 3.04 0.358 

0.354 226 5.68 0.783 

0.253 317 11.37 1.91 

0.206 388 16.8 3.05 

preparative chromatography [4,5]. It also emphasizes the need to select, as far as 
possible, the order of elution of the feed components. 

Table VI describes the influence of the relative retention of the two components 
on the maximum production rate of 99% pure fractions of the second component, with 
a recovery yield of 95%. The optimum loading factor is calculated from eqn. 11. The 
optimum column efficiency decreases rapidly with increasing relative retention and so 
does the optimum column length. At the same time, the optimum mobile phase 
velocity increases rapidly, in addition to the optimum loading factor. The maximum 
production rate increases nearly as [(s( - l)/a13 [17]. The same dependence has been 
predicted in both the touching-band case (100% yield) and the overlapping case 
(maximum possible production rate, no yield constraint) [12,17]. 

Finally, Table VII illustrates the influence of the operating pressurea on the 

TABLE VII 

TRADE-OFFS BETWEEN PRODUCTION RATE AND RECOVERY YIELD: OPTIMUM EX- 
PERIMENTAL CONDITIONS FOR MAXIMUM PRODUCTION RATE AT VARIOUS VALUES 
OF THE OPERATING PRESSURE 

Same experimental conditions as in Table II, except various values of inlet pressure. Recovery yield, 95%. 
Results calculated using strategy III, as explained in the text. 

Operating 
pressure, 

R, v Loading Production rate, 

factor Prz/(l --E)S 

(%) (mol rnd2 s-l) 

20 1050 1.05 0.065 30.6 3.04 0.121 

50 1050 1.05 0.095 52.6 3.04 0.21 

100 1050 1.05 0.127 78.7 3.04 0.316 

200 1050 1.05 0.172 116 3.04 0.462 

B The operating pressure is the highest pressure at which the equipment can be operated safely on 

a routine basis. 
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maximum production rate of 99% pure product, with a 95% recovery yield. The 
optimum loading factor and the optimum column efficiency are both independent of 
the pressure. Both the optimum velocity and the optimum column length (at a given 
value of d,) increase nearly in proportion to the square root of the operating pressure, 
so the cycle time remains constant. Thus, the production rate increases with increasing 
sample size; at a constant loading factor, the latter, in turn, increases in proportion to 
the increasing column length, The production rate is nearly proportional to the square 
root of the operating pressure [12]. 

Optimization of a given column 
In this instance, the column length and particle size are determined and cannot 

be adjusted. Only the sample size and the mobile phase flow velocity can be optimized. 
The value of the ratio di/L can be either larger or smaller than the optimum value for 
the separation considered. 

If dE/L is larger than the optimum (i.e., the column is too short for the packing 
material used), it cannot be operated at the maximum available pressure, because the 
efficiency would be insufficient. We must operate it at the optimum efficiency, with the 
optimum loading factor calculated above (eqn. 11). Hence we must use a lower flow 
velocity than with a column of optimum length to achieve the optimum efficiency, and 
the production rate is lower than that possible with the column of optimum length. The 
data in Table VIII (last three lines) illustrate this situation. If we compare these with the 
similar data in Table IT, we see that the column length in Table VIII (10 cm) is shorter 
than the optimum length for production with a recovery yield in excess of about 82%. 

TABLE VIII 

TRADE-OFFS BETWEEN PRODUCTION RATE AND RECOVERY YIELD FOR A GIVEN 
COLUMN: OPTIMUM EXPERIMENTAL CONDITIONS FOR MAXIMUM PRODUCTION RATE 
AT VARIOUS SPECIFIED VALUES OF THE RECOVERY YIELD 

Same experimental conditions as in Table II, except fixed column length (0.10 m) 

Yield 

(%) 
K v Loading Production rate, 

factor Pr,!(l --s)S 

(%) (mol mm2 SK’) 

60" 685 0.85 0.10 100 5.4 0.45 

80” 685 0.85 0.10 100 3.60 0.408 
90b 825 0.94 0.10 78 3.20 0.313 

95b 1050 1.05 0.10 57 3.04 0.228 
99b 1800 1.38 0.10 5.6 2.92 0.103 

’ In this case, the column is longer than the optimum (see Table II) and cannot be operated at the 
optimum velocity (the inlet pressure would exceed the maximum available pressure). The column efficiency 
being higher than the optimum (cf:, Table II), we must inject a sample larger than that corresponding to the 
optimum loading factor in order to achieve the required yield. This does not compensate for the decreased 
flow velocity, and the production rate is lower that would be possible with the column of optimum length. 

b In this case, the column is shorter than the optimum. We must operate it at the velocity giving the 
optimum efficiency and use the optimum loading factor given in Table II. Compared with the optimum 
conditions (Table II), the mobile phase velocity will be lower and the production rate smaller. The 
production rate decreases rapidly with increasing required yield. 
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Under such conditions, the column must be operated at the flow velocity that gives the 
same efficiency as the optimum column (compare the second columns in Table II and 
VIII), and with the same loading factor as for the optimum column (compare the sixth 
columns in Tables II and VIII). The production rate is decreased by 15% for a recovery 
yield of 90% and by more than 50% for a recovery yield of 99%. 

For each column, there is a optimum flow velocity for the maximum production 
rate. This optimum velocity is such that the column has the optimum efficiency (see 
Table II). Accordingly, there is an optimum value of the inlet pressure [ 11,161. If the 
column is too short, this optimum pressure is lower than the maximum available 
pressure. 

If dE/L is smaller than the optimum (i.e., the column is too long for the packing 
material used), the optimum pressure is higher than the maximum available pressure, 
and we cannot operate it at a high enough velocity to achieve the optimum column 
efficiency (see the first two lines in Table VIII and corresponding data in Table II). The 
column is operated at the maximum available pressure, at the flow velocity given by 
eqn. 7b, and it has the efficiency derived from eqn. 6. However, this column efficiency 
exceeds the optimum efficiency for the maximum production rate. In order to achieve 
the required recovery yield, we must use this excessive efficiency and overload the 
column more. The loading factor is increased, but the production rate is lower than is 
possible with the optimum column, although in the example chosen here the loss is 
almost negligible (l-2%). 

Finally, Table IX compares the performances of various columns packed with 
the same stationary phase but having different lengths and used to separate the same 
binary mixture as used for Table I (1:9 mixture), with the same recovery yield of 95%. 
The loss in production rate that accompanies the use of a column of improper length 
can be very important. It is especially costly if the column is too long. 

TABLE IX 

OPTIMUM EXPERIMENTAL CONDITIONS FOR MAXIMUM PRODUCTION RATE WITH 
A GIVEN COLUMN AT A SPECIFIED YIELD 

Same experimental conditions as in Table II, except fixed column length, as indicated. In all instances the 

required recovery yield is 95% and the required degree of purity of the products is 99%. 

L No Y Loading Production rate, 

(m) factor Pr,/(l --E)S 

(%) (mol mm2 s’) 

0.10” 1050 57 3.04 0.228 

0.127’ 1050 78.1 3.04 0.316 

0.20’ 2300 50 4.4 0.29 

0.30’ 4560 33.3 4.1 0.208 

0.40’ 7300 25.0 4.82 0.162 

a The column length is shorter than the optimum. In this case, the maximum production rate is 
obtained at the column efficiency and loading factor of the optimum column (see Table II). However, the 

linear velocity is smaller than the optimum, and so is the production rate. 
b Optimum column length (see Tabel II). 
’ The column length is longer than the optimum. The column is operated at the maximum available 

pressure. Compared with the optimum, the mobile phase velocity is lower, the loading factor higher and the 

nroduction rate smaller. 
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CONCLUSION 

The theory of optimization presented here is based entirely on the theory of 
non-linear chromatography and as such is as rigorous as possible. It avoids the pitfalls 
of uncontrolled empiricism more or less hidden in previous attempts and the use of 
adjustable parameters [8,9,29]. Nevertheless, the optimum conditions are simple to 
derive in most cases. However, this approach suffers from two serious limitations. 

First, it deals only with binary mixtures. The two-component problem is the 
simplest separation case; it is relevant for the separation of closely related isomers 
produced by chemical synthesis (e.g., separation of enantiomers). In practice, 
a number of impurities may have to be eliminated or the component of interest must be 
extracted from a complex mixture. In this case, as in the optimization of the 
experimental conditions for minimum analysis time, the cycle time depends on the 
retention time of the last-eluted impurity. We may want to operate the column at 
a higher mobile-phase velocity than the optimum value obtained by considering the 
binary mixture made of the main compound of interest in the feed and the most closely 
eluted impurity to be eliminated. This would permit a reduction of the cycle time, 
although a smaller sample size will have to be used. 

Second, the present approach is based on the assumption that the competitive 
Langmuir isotherm accounts satisfactorily for the interaction behavior of the two 
main components of the feed. This is not true except, to some extent, for enantiomers 
[1X]. The more rigorous ideal adsorbed solution model [30] gives slightly better results, 
but it cannot take into account two important effects, the variation of the activity 
coefficients of solutes with their concentrations and the molecular interactions 
between the feed components in the stationary phase [31]. Accounting properly for 
these effects is the last hurdle in the full understanding of the mechanism of preparative 
chromatography, but a major one. 
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